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4 Industrialisation of polymer solar cells 

 

Summary & Conclusion 

The present report refers to the project “Industrialization of polymer solar cells – phase 2”. Both 

the project and this report build directly upon the prior phase 1 where the basic OPV technolo-

gy, ProcessOne, was transferred to Mekoprint. This second phase focuses on an anchoring of 

the transferred technology in Mekoprint’s industrial environment and an anchoring of the tech-

nology as an attractive solution for low-demanding PV applications.  This second phase is also 

concerned with DTU’s further development of the OPV technology towards DTU’s ultimate goal 

of qualifying OPV for large-scale power production. The project represents thus a crossroad, 

where Mekoprint and DTU gradually differentiate themselves with respect to applications and 

therefore also their R&D priorities.  

 

The key targets of phase 2 relate to production cost, stabilization of the production and opera-

tional lifetime of the OPV devices – targets that are import both for niche applications and bulk 

power production. Besides the work dedicated to solving these three key targets, two more ac-

tivities have been included in the project; a pre-study on OPV solar parks and an evaluation of 

the business opportunities arising not only from this project but from the entire Danish OPV ef-

fort. 

 

Production cost 
The road map from phase 1 defines three main tools for reaching the cost target of 1 €/Wp: in-

creasing the efficiency to 4.5 %, replacement of the costly ITO front electrode and removal of as 

much materials as possible. The project confirms that all this plus a foreseen decrease in mate-

rial’s cost coming with economy of scale are required for driving the production cost  below 1 

€/Wp. Calculating also with the economy-of-scale effect is found reasonable as the present cost 

is heavily dominated by materials not yet available in bulk.  

 

Silver has appeared as a critical cost issue due to a steep rise in the silver prices. For this rea-

son the cost of identical ProcessOne cells has more than double from 5 €/Wp to 11 €/Wp over 

the project period. A considerable effort has thus been given to silver-free processes, even 

though this was not a topic in the original project.  

  

Power conversion efficiencies > 11 % has now been reported for small OPV devices. It has, 

however been proven exceptionally hard to achieve such high efficiencies at the scale required 

in this project. 4.5 % has been achieved, but with a proprietary material that is so expensive that 

it conflicts with the 1 €/Wp target. This leaves us with the standard P3HT:PCBM material as the 

most efficient active material available so far when considering the combined effect of cost, sta-

bility and processing.  

 

The ITO front electrode has successfully been replaced by printed electrodes, and this intro-

duces savings on more accounts; fewer processing step, less expensive materials and removal 

of materials. The previously used lithographic patterning of the ITO electrode, the subsequent 

washing of the electrode and the substrate that comes with the ITO are saved, as the new elec-

trode is printed directly onto the barrier foil in the right pattern. More printed electrodes are de-

veloped; silver-based and carbon-based.  
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The cost figures at the onset of the project are: 11 €/Wp for ProcessOne, 6 €/Wp for the present 

technology with silver, and 4 €/Wp without silver. If the economy of scale for the materials is tak-

en into account the cost will be 0.4 €/Wp. 

 

Industrial production 
Mekoprint has taken a series of initiatives in order to stabilize their production and further to 

prepare for full scale production. Actions have been taken to control process tolerances, to R2R 

test the quality of the devices produced, to document the process and to train the operators. 

The planned and performed actions have been summarized in a SIPOC chart.  

 

A new solar-powered laser-pointer has been developed and 2000 items have been produced. 

The laser pointer is used actively to promote polymer solar cells. A commercial project for third 

world lighting products has been launched which uses silicon solar cells to build a market for 

polymer solar cells and switch technology when a competitive level is reached.  

 

Mekoprint has evaluated the commercialization potential for Process One at its current level. 

This shows that the cost, lifetime and performance of the current Process One device need to 

be improved to reach a competitive product. A roadmap for this has been made, and it forms 

the basis for the next phase of this project. 

 

Encapsulation and operation life time 
Investigating and reporting operational life-time for immature technologies an OPV is not trivial, 

as standard accelerated testing protocols are missing. To establish such tests, the behavior of 

the devices in real-time tests must be well studied and compared with the acceleration tests. 

DTU’s Characterization Laboratory for Organic Photovoltaics, CLOP, is built for performing real-

time and accelerated testing of OPV devices both in indoor and outdoor, and from this to estab-

lish a reliable technique for predicting the lifetime from accelerated studies. All testing done by 

CLOP is according to what is recommended by ISOS1.  

 

Based on the CLOP methodology a lifetime close to 2 years have been proven for OPV devices 

encapsulated in a single layer of a high-quality food packaging. Preliminary accelerated test re-

sults for a corresponding device but encapsulated in a double layer of the same barrier shows a 

5-fold improvement in stability. From this it is judged that an operational life of 5 years is within 

reach. 

 

Solar parks 
Gaia Solar has in a pre-study investigated various scenarios for large OPV solar installations. 

The analysis emphasizes three potential sites for the installation: on uncultivated land, along 

highways and as environmental cover for landfills, moreover is an installation procedure where 

the OPV devices are rolled out directly onto the pre-treated ground recommended. The rolling 

out installation is attractive for cost reasons; cost-effective mounting structures and labor-

effective mounting process. The cost of a roll-out OPV installation is estimated to 1.25 €/Wp at 

an module cost of 0.85 €/Wp.  

 

                                                                                                                                                            
1 ) The International Summit on Organic Photovoltaic Stability 
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The economy of a 400 kWp OPV installation is investigated under different scenarios covering 

variations in the degradation rate, the operational periods and the ownerships. The economics 

are calculated in accordance with the Danish PV regulations of December 2012. The analysis 

shows that the investment is attractive provide that the module degradation is limited.  

 

Business opportunities 
The present and near-future business opportunities for the OPV technology relates to the PV 

market for niche applications, i.e. low-demanding applications and low volumes as compared to 

the PV mass market. The Danish OPV companies; Mekoprint, Grafisk Maskinfabrik and 

FOMTechnologies, contributes to the commercialization of the present technology within their 

specific business areas; OPV devices for niche applications, OPV processing machinery and 

OPV axillaries for R&D purposes. These initiatives are judged to be adequate and sufficient for 

bringing ProcessOne and the near-future technology to the market. Addressing, on contrary, the 

high-volume PV mass market by a more advanced OPV technology targeted at large-scale 

power production, requires far stronger financial – and R&D commitment than what is the case 

for the implementation of the technology in the niche market. International strategic partnerships 

and venture capital might be required for bringing the next generation of DTU’s technology to 

the market.  
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1. Introduction 

The objective of the project “Industrialization of polymer solar cells” is to bring DTU’s strategic 

research effort (> 10 years) to an industrial level with ensuring commercialisation in a Danish 

context. The project is, according to the original plan, divided into three phases. The present re-

port refers to the project’s second phase, where the polymer solar cell technology and the in-

dustrial production facilities investigated in the project’s first phase are consolidated and further 

developed.  Phase 1 was in contrast concerned with technology transfer and development of 

low-demanding applications.  

 

In phase 1, the basic production technology for polymer solar cells, ProcessOne [1-1], was 

transferred from DTU to Mekoprint. The deliverable comprised assistance in establishing a pro-

duction line, running this line in, training the operators and delivery of process-specific materi-

als. Another important activity in phase 1 was investigation, development and demonstration of 

possible applications for this new technology. The applications in focus were the ones matching 

the polymer solar cell’s actual maturity level, i.e. low-demanding application as for example 

charging of small batteries for powering of LED lightening. Team members in phase one were 

Mekoprint A/S, Gaia Solar A/S, Faktor 3 ApS and DTU.   

 

In the present phase, DTU has focused on a consolidation of the polymer solar technology. This 

means to go back to the research labs in order to develop and implement the technology im-

provements needed for bringing polymer solar cells to a higher quality level where they can 

compete with other thin-film technologies in applications such as the ones investigated in phase 

1.  The ultimate future goal for DTU is to develop the technology to a level where on-grid power 

production is feasible, and it is expected that Mekoprint’s process of technology ripening will 

generate the necessary improvements for its use in low-power and integrated products. DTU’s 

work is, in phase 2, consequently focused on lowering the module’s production cost, miniaturi-

sation and technical yield, and moreover on increasing the module’s energy-conversion effi-

ciency and stability. The progress with respect to the first two issues namely cost and efficiency 

are described in the report’s chapter 2, whereas the progress on stability is reported in chapter 

4. 

 

Consolidation of the production of polymer solar cells means for Mekoprint to stabilize the pro-

duction so that the product’s quality is predictable, constant and at a level corresponding to 

comparable modules produced at DTU. Stabilization has obtained in a joint effort with DTU, and 

Mekoprint has subsequently analyzed the requirements for competition and started to imple-

ment the automations and process improvements needed to enter commercial production in 

2015. The current ProcessOne has been used for a new laser-pointer demonstrator and a num-

ber of customer interactions have been handled, of which three have potential for not only mar-

ket introduction but also world-wide exposure of the Danish polymer solar cell technology. The 

third world solar lamp activities in phase 1 has uncovered a potential path to building a market 

for polymer solar cells and has spawned a separate project as it has the potential to run on 

commercial conditions. The report’s chapter 3 describes this work in details.   

 

At the time of planning and applying for funds for the project’s phase 2, i.e. summer 2010, rigid 

encapsulation was seen as necessary for achieving an operational life consistent with energy 
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production in bulk. For this reason Gaia Solar and their expertise on rigid encapsulations for 

conventional solar panels was regarded as essential for the project. Concurrent investigations 

have, however, revealed that rigid encapsulations do not support the bulk-power target, as such 

encapsulations drives up the system’s embedded energy and thereby the energy pay-back 

time. All activities related to rigid encapsulations have thus been replaced by activities in direct 

support of the bulk-power target: cost- and energy-effective flexible encapsulations and PV 

parks with flexible OPV modules. The first task relates to the module stability and forms an inte-

grated part of DTU’s work in this field, see chapter 4, whereas the later activity is an independ-

ent investigation performed by Gaia Solar and reported in chapter 5.  

 

DTU has, upon request from EUDP, explored various strategies for commercialization of the 

OPV technology, and the analysis is reported in chapter 6. 

 

This report focuses entirely on the achievements made in phase 2. For a general description of 

the polymer solar cell, its production and its quality profile please refer to the report for phase 1, 

[1-2]. DTU’s main channel for reporting their R&D progress is by publications in internationally 

prestigious scientific journals. The majority of DTU’s work refereed in this report has thus been 

published in such journals, and all details about the already published work can be found in the 

referred papers.  

 

References 
1-1 F.C. Krebs et al, J. Mater. Chem., 2009, 19, 5442. 
1-2 H. Lauritzen et al:  “Industrialization of Polymer Solar Cells, EUDP project 64009-0050”, 

project report, Department of Energy Conversion and Storage, DTU, issued Marts 2012.  
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2. Production cost 

A key achievement in the previous phase 1 of this project was a more than halving of the pro-

cessing cost for ProcessOne solar cells down to 5 €/Wp, and a roadmap leading the way further 

down to 1 €/Wp. The roadmap defines three main tools for reaching the 1 €/Wp target: increasing 

the solar cell’s efficiency to 4.5%, replacement of cost-driving materials and removal of as much 

materials as possible. This overall plan has been followed in phase 2. Scarcely available mate-

rials have also been a topic in phase 2, as such materials represents a crucial bottleneck for 

scale the OPV technology to the levels required for serving as a persistent energy conversion 

technology. 

 

The main learning with respect to the power conversion efficiency achieved in this project is that 

the high efficiencies reported internationally for small cells, > 10 %, is extremely hard to recon-

struct at large scale and in a full roll-to-roll setting. An efficiency of 4.5 % has been reached in 

this project but for a proprietary material that is so expensive that it will never meet the project 

objective of 1 €/Wp. This leaves us with the standard P3HT:PCBM material as the most efficient 

active material available so far when considering the combined effect of cost, stability and pro-

cessing. 

 

Replacement of major cost-driving materials is a matter of; first of all, replacing the indium tin 

oxide (ITO) used in the solar cell’s front electrode, see Figure 2-1. ITO is purchased externally 

and is delivered as a uniform film that needs to be patterned into the stripe motif of the module. 

The ProcessOne patterning process contaminates the foils, which requires thus a cleaning be-

fore further processing. Replacing ITO by a roll-to-roll printed electrode allows, on contrary, the 

electrode to be printed directly in the requested motif and directly onto the solar cell’s barrier 

foil. Hereby are, not only, the patterning and washing steps surpassed, but the substrate that 

comes with the ITO electrode is also saved. Print processing and a corresponding upgrade of 

DTU’s R2R machinery have been essential for reaching the cost targets in phase 2.  

 

During the course of the project silver has appeared as a critical cost issues due to a steep rise 

in the silver price over the project period. For this reason the cost of identical standard Proces-

sOne cells has more than double over the project period from 5 €/Wp to 11 €/Wp. A considerable 

effort has thus also been given to replacement of silver, even though this was not a topic in the 

original project plan. The achievements here are also hinges on the new printing machinery 

available in the laboratory.  

 

As both silver and indium are scarcely available materials they should also be phased out in or-

der to ensure full scalability of the OPV technology. 

 

Upgrade of R2R processing facilities 
DTU’s roll-to-roll processing equipment have been upgraded with units for washing, corona 

treatment, ink-jet printing, UV curing and water cooling. This fulfils deliverable 1.1 “Coating line 

is upgraded”, deliverable 1.2 “Ink-jet printer is installed” and deliverable 1.3 “R2R washer is in-

stalled”. 
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Figure 2-4
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The discussion above justifies that the deliverable 1.4 “2 €/Wp for standard ProcessOne” has 

been reached when neglecting the rise in silver cost and by using the cost of silver at the start 

of the project, and the deliverable 1.6/milestone M2 “1 €/Wp achieved for modified ProcessOne” 

has been reached under the “economy-of-scale” condition. 

 

Table 2-1: The cost structure in €/m2 of processed active area and €/Wp for polymer solar cells at the start of 

this project (ProcessOne), as a result of this project (EUDP-II) and with estimated materials cost for fully scaled 

materials production (Economy-of-scale). The cost is given per active area as this eliminates the effect of the 

actual application on cost. The processed area is assumed to be 1 m2. 

 Cost (€) 

Component ProcessOne1 EUDP-II EUDP-II no silver2 Economy-of-scale 

  
Barrier 6,6 6,6 6,6 3 

Adhesive 2,53 2,53 0 0 

Substrate 0 6 0 0 

Electrode-1 39 10 10 1,24 

Electron transporting layer 50 11 0,1 0,1 

Active 16,25 16,25 16,25 2,5 

Hole transporting layer 16 16 16 0,6 

Electrode-2 24 24 4 4 

Adhesive 2,53 2,53 2,53 2,53 

Barrier 6,6 6,6 6,6 3 

Processing cost 40 4 2,66 0,43 

Total cost (€) 203,5 105,5 64,7 17,4 

Process time per m2 (min) 30 3 2 0,3 

Typical efficiency (%) 1,8 1,8 1,8 4,9 

Cost (€/Wp) 11,3 5,9 3,6 0,4 

 
1 The cost of silver has increased during the project’s running period and therefore the cost of ProcessOne is higher 
   than the 5 €/Wp reported in in the previous project 64009-0050 “Industrialization of Polymer Solar Cell”, Phase 1. 
2 The carbon based solar cells are only efficient for small areas such as the credit card sized modules. Currently 
   reached conductivities of printed carbon pastes do not allow for transport of high current 

 
 

References:  
2-1 B. Azzopardi et al, Energy Environ. Sci., 2011, 4, 3741. 

2-2 J.-S. Yu et al, Nanoscale, 2012, 4, 6032. 

2-3 T.T. Larsen-Olsen et al, Adv. Energy Mater., 2012, 1091. 

2-4 National Renewable Energy Laboratory (NREL), USA, 7 February 2013 

2-5 T.T. Larsen-Olsen et al, Energy Environ. Sci., 2012, 5, 9467 

2-6 M. A. Green et al, Progress in Photovoltaics: Research and Applications, 2006, 14, 743.  
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3. Industrial production 

The overall goal for Mekoprint was to obtain stable production for DTU’s ProcessOne polymer 

solar cell technology, which has been fully achieved (Milestone M3). To obtain stable produc-

tion, a series of initiatives has been carried in cooperation with DTU, which effectively trans-

ferred the production technology for Process One to Mekoprint. At the same time, the commer-

cialization potential for Process One in the current form was evaluated, and it was found that the 

cost, lifetime and performance need to be improved to reach a competitive product. The 

roadmap for this can be found in Mekoprint’s 2012 business plan for polymer solar cells, which 

is available upon request. The focus for the remainder of this project has therefore been to get 

the production streamlined and ready for commercial production in phase 3a. Work on the 

commercial side has paved the way for market introduction once the polymer solar cells are 

competitive.  

 

Stabilized production 

One of the first project objectives for Mekoprint was to obtain stabilized production for Process 

One solar cells, which not only requires understanding of materials and processes but also 

good craftsmanship.  

 

The production processes has been stabilized through a joint effort involving several coating tri-

als at Mekoprint, first under supervision by Professor Frederik Krebs and later without supervi-

sion from DTU. This task was supported by analysis work at DTU including microscopy, IV-

characterization, LBIC imaging, TOF-SIMS elemental analysis, and spectrometry to eliminate 

defects and optimize coating uniformity. The production was stabilized according to schedule, 

completing deliverable 2.2/milestone M3: “Mekoprint’s production is stabilized”. 

 

This work was extended by testing 3 alternatives of the ITO PET foil, which is the substrate for 

solar cell production. A Chinese origin ITO PET foil was rejected for low uniformity of the resis-

tivity, while an American product, OC50 from Solutia proved far superior. A low resistivity alter-

native was compared to the standard material and highlighted the importance of a very tight 

match of the materials in the solar cell, since it introduced non-reversible failure modes to the 

solar cell. 

 

Process improvements 
Following successful stabilization, a number of improvements to the production lines have been 

implemented to prepare for full scale production. 

 

ITO patterning 
The ITO patterning process has been optimized to remove sources of scratches, which impair 

performance and visual quality. The main work carried out is removal of an inspection station, 

surface treatment of static web guides, lowering of web tension and tests to verify the quality 

improvements. The result is that the ITO foil now only has small scratches, which do not affect 

performance.  
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Barcode printer 

An inkjet printer has been installed for writing bar codes and serial numbers during early stages 

of production, which allows for full traceability of solar cells through production and logging of 

process parameters and test results, see Figure 3-1. The coating section and the R2R tester 

have been equipped with bar code readers and software updated for storing bar codes. Data 

analysis scripts have been written for analysis of data with reference to bar codes. This makes it 

easy to map the performance of solar cells to specific process parameters like layer thickness.  

 

 

Figure 3-1: Ink-jet printer writing barcodes for tracking of process parameters and performance 

 

Dedicated pumps 
Dedication of pumps for specific solvents was achieved by the purchase of a new Knauer pump, 

which is now dedicated to isopropanol-based inks, while the original Knauer pump is dedicated 

to chloro-benzene-based inks. This reduces contamination problems and allows for quicker set-

up when coating multiple layers. 

 

Automatic cleaning 
An automated in-line wetting and cleaning process for improved coatability has been imple-

mented. Wetting makes the solar cells more receptive to new layers of materials increasing 

yield and performance. The main work is design of a setup for cleaning and wetting as well as 

installation of a dedicated pump for this purpose and embedding it into the production control- 

and log system. The result is that the line can be operated without paying attention to the clean-

ing or wetting process. 
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Web guide 

The web guide system on the coating line, which keeps the web in the correct position during 

coating, has been found insufficient and replaced by a new camera based system capable of 

detecting the low contrast lines of ITO, which now serves as reference for all coating steps. This 

increases the registration precision of the coated layers, which eventually raises the yield. 

 

Logging and traceability 

The logging system for recording of process parameters, which was initiated in phase 1 is now 

updated with data processing and is actively used for production feedback. The main work is in 

developing Matlab software, which analyses production log files and test data. Further, the log-

ging system is open and extendable for new sensors and imaging during phase 3a. 

 

Masks for coating 

A crucial part of setting up the coating line is alignment of the mask and shim used for guiding 

the ink. This task is time consuming and requires great caution as 45 fragile metal strips must 

be positioned within roughly 100µm for the solar cells to work. Extensive development efforts 

has been put into testing adaptable and quickly deployable replacements for this system, as it is 

important for production cost and user adaption of the solar cell form factor. Experiments in-

clude laser cutting, contour etching and partial etching of three different mask/shim materials. It 

has proven impossible to combine the mask and shim into a single unit, see Figure 3-2, due to 

tolerances, even though this would have been the optimum solution. Instead, a material has 

been found, which allows for precise contour etching replacing laser cutting for both mask and 

shim, which reduces tooling cost and tool production time. The resulting masks no longer need 

to be reused, have less internal tension, have less edge roughness and give full freedom for 

designing custom solar cells for customers.  

 

 

Figure 3-2: Combined mask and shim for fast assembly of the coating head produced at Mekoprint. This solu-

tion was investigated and finally rejected due to the tolerances on the etched ink channels. A simpler etched 

solution was implemented instead. 
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Training of operators 
Operators have been trained through both production of solar cells and coating trials with much 

cheaper non-functional inks, which are prepared from IPA and dyes for visual evaluation. The 

operator, who was trained first in coating of functional inks resigned his position late 2011 and a 

new operator has been trained in addition to the process engineer. To become less vulnerable 

to a similar situation, a formal process description has been prepared.   

 

All product types at Mekoprint has a formal description called PKS; process- and quality specifi-

cation, which defines all process steps and special considerations for materials and machine 

settings. A PKS for polymer solar cells has been developed and tested during coating and solar 

cell productions and is now in effect. The result is that a trained machine operator can now pro-

duce DTU’s Process One solar cells as any other product at Mekoprint concluding deliverable 

2.5: “Production team is trained”. 

 

Test and automation 

A sun simulator lamp, SolarTest1200 from Atlas, was loaned by DTU to Mekoprint for this pro-

ject, which together with a Keithley 2400 Source meter, a CM4 bolometer and custom software 

from DTU forms an IV-test system, which has been used extensively to test solar cells. Me-

koprint has extended the test system to a multi-channel life time tester, see Figure 3-3, which 

has been used to test life time of solar cells produced. The test system was programmed in C# 

and built on a similar data format as used by DTU for easy transfer of test results.  

 

In addition to providing important data during the current project, the life time test facility will be 

central to future life time improvement activities. The life time test system is compatible with 

ISOS-L-1 and through use of a climate chamber also for ISOS-D-3 lifetime measurement proto-

cols [3-1]. This concludes deliverable 2.1: “IV-test system is installed”.  

 

 

Figure 3-3: IV-test stand with multichannel 4-point IV-trace and life time measurement. 
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SIPOC 
To sum up the work on the production process, a SIPOC2 chart, see Table 3-1, is included be-

low for overview of the progress in this and the first project stage as well as activities planned 

for the next stage. 

 

Table 3-1: SIPOC chart summarizing the planned and performed actions taken to improve the production of 

polymer solar cells  

 

 

Phase 1 

Carried out 

Phase 2 

Carried out 

Phase 3a 

Projected 

Suppliers / Materials 

ITO 

Functional inks 

Silver contacts 

Adhesives 

Barrier materials 

 

 

Initiated 

DTU 

Mekoprint standard 

Mekoprint standard 

DTU standard 

 

Partnership 

DTU 

Candidates identified 

Test printed types 

New back barrier 

 

No further work 

Commercial company 

Best types found 

New types implement. 

Test and implement 

Inputs / IP / tools 

Cell design drawings 

Process Parameters 

Operator instructions 

Screen printing masks 

Coater head 

Coater masks/shims 

Pumps 

Web guide 

Log system 

 

DTU design 

Copy DTU setup 

Guidance from DTU 

Mekoprint standard 

DTU design 

DTU design 

DTU setup 

Web side aligned 

Implemented 

 

DTU design 

Copy DTU setup 

PKS implemented 

Mekoprint standard 

DTU design 

Mekoprint produced 

Extended 

Print aligned 

Extended 

 

Customer designs 

Ink suppliers & DTU 

Adapt to new inks 

No further work 

DTU/Mekoprint 

Refinements 

No further work 

No further work 

Vision feedback 

Process 

Pattern ITO 

Wetting/cleaning 

Coat functional inks 

Print contacts 

Encapsulate 

Bar code printing 

Test solar cells 

 

Adapt etching to ITO 

Manual 

DTU supervision 

Standard process 

Standard process 

None 

Done by DTU 

 

Remove scratches 

Automated 

Independent of DTU 

Standard process 

Standard process 

Implemented 

R2R tester built  

 

No further work 

No further work 

Adapt to new inks 

Standard process 

More advanced 

No further work 

Adapt to custom cells 

Outputs 

Solar cells 

Process data 

 

 

Working solar cells 

Collected 

 

 

Performance as DTU 

Analysed 

 

Competitive cells 

Automated learning 

Customers 

Orders  

 

None 

 

Laser pointers 

 

Solar cells 

 

                                                                                                                                                            
2 ) SIPOC is short for Suppliers, Inputs, Process, Outputs and Customers. SIPOC is a standard chart used in Six Sigma 

and Lean Manufacturing to give an overview of a process. 
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Commercialization 
During the project there has been numerous customer contacts; most through e-mail and 

phone, but also face to face meetings. Potential customers have visited Mekoprint 17 times dur-

ing the project period and Mekoprint has visited potential customers 6 times at their premises. 

Demonstrator solar cells, flashlights and laser pointers have been widely distributed, and for 5 

customers, early demonstration activities have been carried out. For 7 of the customers, we see 

a potential for future commercial activities. 3 customers have been selected with particular high 

impact potential not only for sale but also for world-wide exposure of the technology, once cer-

tain target specifications are met. 

 

Competitiveness 
Evaluations with customers of polymer solar cells in 16 applications where polymer solar cells 

have a realistic potential, reveal a picture of the currently prohibiting factors for commercializa-

tion, see Table 3-2. In this table, all requests for third world lighting products have been treated 

as one, as specifications are similar. We see that there is an even distribution of the prohibiting 

factors between the 16 applications. Unfortunately, customers who can accept current state of 

technology for one or two of the three factors have high demands in others. Therefore we have 

seen no commercial activities on polymer solar cells except for small demonstration projects. 

The conclusion is that the efficiency, the lifetime and the cost must be improved, which is part of 

the next phase of this project. 

 

Example customer project 
One customer enquired about a solar cell lamp for temporary installation on a flexible roof. The 

area could be as large as needed, and the life time should only be 12 months dark storage fol-

lowed by 2 months usage. This project could have been realised with the current ProcessOne 

provided a cost match with other flexible solar cells, which is currently not possible. This exam-

ple shows that niches exist for polymer solar cells, but the level of competitiveness has not yet 

been reached.  

 

Table 3-2: Customer feedback on the current technology. The number refers to the number of customers giving 

one of the two statements with respect to three performance parameters; cost, efficiency and lifetime. 

↓Statement                                         Performance→ Cost Efficiency Lifetime 

The most prohibiting factor is 5 6 5 

The current state is acceptable 2 3 2 

 
Laser pointer demonstrator 
The flash light demonstrator reported in phase 1 has been further developed to target business 

executives, who need a laser pointer more than a flash light, see Figure 3-6. The aim is to have 

this laser pointer laying around at meeting rooms and used during presentations with references 

to DTU and Mekoprint. The work involved new electric and mechanic design, where the adapt-

ability of the polymer solar cell was proven: The design required a cut-out in the solar cell and 

moving the contacts to a new position, which was easily implemented and would have been 

cumbersome if not impossible on other types of solar cells. Close to 2000 laser pointers have 

been produced so far concluding delivery 2.3: “Credit card modules produce” and deliverable 

2.4: “Upscaled production with product integration”. 
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Figure 3-6: New demonstrator for phase II: A solar powered laser pointer (left) and the specially adapted solar 

cells (right), where terminals have been shifted sideways and contour cut to fit the product design. 

 

Other publicity 
In addition to the presentations listed in Appendix A. Two events have been hosted by Me-

koprint for groups of people with special interest in sustainable energy and inventions, see Fig-

ure 3-7, where the Danish Inventors Association is introduced to slot die coating. At both events 

the audience was initially expecting a new technology for roof mounted energy production, but 

after the presentations a great interest in the many other fields of applications was created. A 

third event has been planned for February 2013. 

 

 

Figure 3-7: Introduction to polymer solar cells for the Danish Inventors Association.  Here at the coater equip-

ment. 

 

Installation: Bio Cult 
Installation artist Louise Toft needed special solar cells for an art project called BioCult, which 

explores the interaction between nature, technology and human beings. The installation, which 

is shown in Figure 3-8, contains soil, grass and worms, and spectators can interact by sending 

an electrical current through the soil, which drives out the worms. To further emphasis the inter-

action between nature and technology, the power for the installation should be supplemented by 
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solar cells, and from an artist’s perspective, the design freedom of polymer solar cells and the 

fact that electricity is produced from organic materials was a perfect fit for the installation. The 

solar installation was made from 25 credit card solar cells grouped in five sets of five series 

connected solar cells with separate reverse diode per set. This way, the solar cell sets could 

charge the battery individually according to their orientation towards the sun The installation 

was first exhibited may 18’th 2012 and has been shown at 8 musical festival events called “Chill 

i Parken” in 5 Danish cities.   

 

  

Figure 3-8: Art project BioCult on display before (left) and during (right) mounting of solar cells. 

 

Lighting Africa 

Following the third world lighting activities reported in phase 1, 10 different businesses and or-

ganizations have inquired about further activities in this field with the aim of buying solar cell 

powered lamps for sale or distribution in the third world. This is seen as a great opportunity for 

polymer solar cells to build a market before they are mature, as silicon solar cells can be used 

to power the first lamps and later switching to polymer solar cells, which are the much preferred 

solution due to their inherent ruggedness and low weight, which is important for logistics in pri-

marily Africa. A similar strategy is followed by the British competitor Eight19. 

 

 In this project, a design sketch, see Figure 3-9 and cost calculation has been carried out which 

underlines that full production in Denmark is not feasible. Assembly in China, which is the nor-

mal alternative has been ruled out, as China products are widespread already in Africa and are 

increasingly picking up bad reputation due to quality issues. The innovative approach is to de-

sign and manufacture the electronics and other quality critical parts in Denmark and perform fi-

nal assembly in Africa close to the end user. This approach paired with a few previously unseen 

distinguishing factors has made this project interesting to not only investors in Africa but also 

foundations in Denmark, which are willing to sponsor development and business setup in Africa.  

 

Even though further development of a new Africa lamp is relevant to this project, the Lighting Af-

rica project has been separated out to run on commercial basis with the aid of investors and de-

velopment foundations, and the coordination and product ownership has been transferred to an 

external company, SMD Holding, which allows Mekoprint to focus on polymer solar cell devel-

opment. The external product owner, Mads Mølgaard, who lives part time in Tanzania and runs 
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4. Encapsulation and operational lifetime 

In order to be able to report and compete for the most reliable and long living technology in the 

field, there must be performed a standard qualification testing of the technology according to 

standard testing protocols. Stability testing standards for inorganic photovoltaic devic-

es/modules/panels, such as for example Si based devices, have been long established and 

published by American Society for Testing and Materials (ASTM) and International Electrotech-

nical Commission (IEC). Unfortunately, this is not the case for the new field of organic photovol-

taics (OPVs), as OPVs are still in a phase of progressive developments with continuous up-

grades in the device architecture and structure and the materials used in the device.  

 

Establishing standard testing protocols for such an erratic technology is not trivial. This is espe-

cially the case for the accelerated testing, where excessive amounts of stresses are applied on-

to the device to accelerate the ageing process and then using the accelerations factor to esti-

mate the device lifetime in a real time. In order to define the acceleration factor of a particular 

stress, the effect of the stress on the device in real time must be well established. In other 

words, in order to be able to establish a reliable standard for acceleration testing, the behavior 

of the technology in real-time tests must be well studied and compared with the acceleration 

tests [4-1].  

 

The OPV field currently benefits from the recently published ISOS testing recommendations [4-

2], which address the issue of reliable stability testing of the OPV devices and offer general 

guidelines, which can improve the reproducibility of the OPV stability testing, but which do not 

offer standard qualification tests for reporting device lifetimes.  

 

Thus, in order to achieve the target of 5 year lifetime of an OPV device a Characterization La-

boratory for Organic Photovoltaics (CLOP) was built at DTU. The prime objective of the labora-

tory was to continuously perform real-time and accelerated testing of OPV devices and modules 

both in indoor and outdoor conditions according to the ISOS testing recommendations [4-2] and 

to establish a reliable technique for predicting the device lifetime based on accelerated studies. 

 

As a next step devices and modules with various encapsulations were tested to establish the 

most stable devices that would survive the accelerated tests and predictably present the re-

quired lifetime of 5 years. Special focus has been given to devices encapsulated in ultra-thin 

barriers as this is in line with the strategy of removing as much material as possible, see section 

2. I order to explore such ultra-thin encapsulations a R2R UV laminator has been installed, de-

liverable 3.2. 

 

CLOP - Characterization Laboratory for Organic Photovoltaics 
The following equipment was purchased for the CLOP in order to fulfill the aforementioned tar-

gets: 

 

- Solar testing setup based on a sulfur plasma lamp (SPL) with class A spectrum, which was 

customized for accurate testing of device/module photovoltaic properties in indoor condi-

tions. This also involved a reference Si photodiode with KG5 filter calibrated at Fraunhofer 

Institute, used for performing accurate calibration of the solar testing setup. 
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- An instrument for measuring Quantum Efficiency (QE) of the photovoltaic devices according 

to ASTM standards.  

- A weathering chamber for performing indoor ageing experiments according to ISOS-L-3 

recommendations with a full control of parameters, such as temperature, relative humidity 

and irradiance with AM1.5G spectrum. 

- A thermal cycling chamber for simulations of outdoor temperature and humidity cycles in an 

accelerated mode according to ISOS-T-3 recommendations. 

- Solar testing setups based on Metal Halide Lamps (MHL) with class B spectrum for per-

forming accelerate ageing experiments with intensive light soaking in indoor conditions ac-

cording to ISOS-L-1 recommendations. 

- Apart from the purchased equipment a number of units have been utilized within DTU for 

reaching the target of this project, such as: 

- An oven with a wide range of temperature control for performing ageing tests involving high 

temperature dark storage according to ISOS-D-2 recommendations.  

- An outdoor solar tracking platform with an integrated light concentrating unit. The platform 

allows for performing both real-time outdoor ageing of devices according to ISOS-O-3 rec-

ommendations and accelerated ageing using concentrated light with intensities up to 200 

times higher than the normal sunlight. 

- Low light testing setups based on halogen and sulfur plasma lamps, commonly used for in-

door lighting in rooms and offices, for performing low light ageing tests according to ISOS-

LL recommendations. 

This fulfills deliverable 3.1 “IV-test system is installed”, deliverable 3.4 “Weather/thermal cham-

bers are installed”, deliverable 3.5 “Outdoor tracker is installed”.  

 

Procedure for lifetime testing 
The diagram in figure 4.1 outlines the plan of device testing procedures that were developed at 

CLOP and employed for evaluating device lifetimes. The detailed steps are as follows: 

 

1. Accurate characterization of the initial performance of all the samples, which involves: 

- Quantum Efficiency (QE) measurements of the sample 

- Mismatch Factor (MF) calculations for the sample using the QE data 

- Calibration of the SPL solar simulator using MF data of the sample and Fraunhofer ref-

erence photodiode 

- Accurate masking and IV testing of the sample under the calibrated light source 

2. Distribution of the samples among the different ageing tests, such as: 
- ISOS-O-3 (outdoor ageing using solar tracking platform) 

- ISOS-L-2 (indoor light soaking under irradiance of 1 sun and temp. of 70oC using B 

class MHL simulators) 

- ISOS-L-3 (indoor weathering under irradiance of 0.7 sun, temp. of 65oC and relative 

humidity of 50 %) 

- ISOS-D-1 (reference storage in a shelf) 

- ISOS-D-2 (Storage in the oven in dark at 85oC, low humidity) 

- ISOS-D-3 (Storage in weathering chamber in dark at temp. of 50oC and relative humidi-

ty of 85 %)  
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Figure 4.3:  Comparison of module performance with single of double encapsulation tested according to ISOS-

D-3. 
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5. Polymer solar parks 

The chapter describes an extensive development plan for bulk energy production by means of 

polymer solar modules. Three potential installation types have been identified; on uncultivated 

land, along highways, as environmental cover for landfills. A corresponding SWOT analysis 

concludes that the main technological opportunities are linked to new deployment, the installa-

tion process and the module encapsulation.  With these applications in mind, different installa-

tions scenarios have been identified and considered with respect to advantages and disad-

vantages of each scenario (ground mounted, tracking, and deployment of solar cell rolls). In ex-

tension of this analysis, the cost structures for installation of selected scenarios have been cal-

culated on per Wp basis The cost ranges from 1.25-3.36 €/Wp.  

 

The conclusion of the analysis is that the installation approach of rolling out polymer solar mod-

ules directly from the roll and onto the pretreated ground has the lowest cost and utilizes the in-

herent advantages of the technology. Ration installation can for be done by a modified timer 

harvester.  

 

On the basis on the current technology development, the preferred module design and module 

specifications for bulk energy production are determined. The module needs a considerable 

amount of strips connected in series to generate a sufficient voltage and power for commercial 

inverters. 

 

Lastly in the sensitivity analysis, the return on investment (ROI) is analyzed as a function of the 

annual degradation in module power output (5-20%), the interval between replacement of the 

polymer solar modules (5-10 years), the type of investor (industrial enterprises, small/medium 

businesses, municipalities), and the module cost (0.25-0.85 €/Wp). The annual degradation is 

the one factor affecting ROI most strongly. Crystalline PV parks with 0.5% annual degradation 

take 8 year+ to payback. While polymer solar installations may have a lower costs structure lim-

ited by the balance of system cost, the annual degradation strongly needs to be reduced in or-

der to even reach the financial pay back times of silicon solar parks.  

 

The site, the mounting and the encapsulation 
Three potential installations sites are identified as attractive for polymer solar plants; on unculti-

vated land, along highways and as environmental cover for landfills where the installation serve 

a double purpose, see Figure 5-1. These are chosen because of an attractive cost for purchas-

ing or leasing the require land. 

 

Table 5-1 shows a SWOT analysis for the polymer solar technology. The technology’s main op-

portunities are identified as the polymer technologies suitability for fast and automated installa-

tion, the opening for circumventing the costly step of converting the roll-to-roll process modules 

into individual panels and the technology’s fast learning rate and its suitability for mass produc-

tion. In the design, the installation and the operation of polymer solar parks one should seek to 

take full advantage of these opportunities.  
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Table 5-5: Area required for the viable installation options 

 

System design 

On tilted racks On trackers 
On the 
ground Compare 

Al Frame flexible Al Frame2 Flexible C:Si park 

Annual horiz.global irradia. [kWh/m2/yr2] 1000 1000 1000 1000 1000 

Increase due to tilt angle [%] 0,15 0,15 0,26 0,00 0,15 

Ground Coverage Ratio*  [%] 0,55 0,55 0,35 0,90 0,55 

Module efficiency [%] 4.5 4.5 4.5 4.5 17 

System Performance Ratio 0,75 0,75 0,80 0,75 0,80 

Area required  for 1 MW plant [ha] 4,68 4,68 6,31 3,29 1,16 

* The fraction of the total area of the installation that is covered by solar modules 

 

 

The installation process 
A step-to-step guide for installation of large areas of flexible rolled-up polymer solar modules di-

rectly on the ground is shown in Table 5-6. The suggested procedure comprises methods used 

for rolling out flexible thin film solar cells on abolished landfills in Italy, among others.  

 

The process of rolling out the band containing the solar modules is not complex, but the installa-

tion machinery has to be designed for the task. An example of how this can be done by means 

of a modified timber harvester is shown in Figure 5-2. The timber harvester is equipped with a 

rolling-out device attached at the rear of the harvester. The rolls can be stored on the vehicle 

and are from here easily accessible during the installation. A timber harvester running at 1-2 km 

per hour allows installation of 1.6-3.2 hectares 2 meters wide modules in one working day (8 

hours). This corresponds to ~ 0.5-1 MW per day for solar modules with an efficiency of 4.5 %.  

 

Figure 5-2: Deployment by a modified timer harvester 

 Initiation of rolling out process Deployment of several solar strings 
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Table 5-8: Examples of module specifications suited for large installations 

 

 Prototype Future design 

Tech Polymer solar cell (OPV) Polymer solar cell (OPV) 

Stripes 

    Width 

    Gap 

    Length 

Composed of 41 stripes 

13 mm 

gap of 2 mm 

5 m 

Composed of 136 stripes 

13 mm 

gap of 1 mm 

5 m 

Sealing Degradation requirements: Impermeable to water 

and oxygen 

IP 65 certificate: protection against low pres-

sure jets of water from all directions 

Pmpp 46 W 377 W 

Efficiency 1,83%  4,5% 

Power  

tolerance 

+/- 5 % +/- 5 % 

Weight 3,5 kg 11,5 kg 

Size 

     Width 

     Length 

     Height 

 

610 mm 

5 m 

1-2 mm 

 

2000 mm 

5 (or longer) 

1-2 mm 

Junction 

box 

Weatherproof 

MC4 connector 

IP 65 certificate 

Incl. microinverter 

MC4 connector 

Circuit Long strips in series 

Circuit printing 

Long strips in series 

Circuit printing 

Contacts Printed metal electrodes (silver ink) Printed metal electrodes (silver ink) 

 

Setup 

(illustra-

tive) 

 

 

 

 

The basic assumptions used in the sensitivity analysis are listed in Table 5-9. The strength of 

the following parameters is considered: the system degradation, the operational period and the 

character of the ownership. These parameters are investigated under various modules costs 

and various degrees of own consumption, i.e. the fraction of the energy produced that is con-

sumed by the owner.  

 

The four different ownerships investigated are; owned by respectively a municipality, an indus-

trial enterprise, a supplier of professional service, and a community4. Owners within these cate-

gories will, due to the Danish solar regulation5 and due to their VAT and tax obligations, experi-

                                                                                                                                                            
4 ) In Danish: fællesanlæg i boligforeninger etc. 
5 ) of December 2012 
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ence different economics, see Table 5-10. Operating the installation under business regulations 

allows for depreciating the asset with maximum 25 % per year. It should be noted that this limit 

does not apply for community-owned installations. The size of the installation investigated is 

400 kWp as this is the upper limit set by the present regulations.  

 

Private household ownership is not considered, because the Danish regulations do not allow 

private households to depreciate the assets, and because a private household is unlikely to own 

sufficient land and have a sufficient large own consumption for making a 400 kWp installation 

realistic.   

 

Table 5-9: Assumptions used in the sensitivity analysis 

Assumptions  

size 400 kWp 

BOS cost 0.40 €/kWp 

depreciation rate 25% 

annual land lease  843 €/ha 

annual inflation, general 2.1% 

annual inflation, electricity 4% 

investment 100% debt  

loan period 10 years 

interest  4% per anno 

disassembly cost equal to scrap value 

orientation of panels 30% inclination, south facing 

output ratio 960 kWh/kWp 

allocation for replacement of inverter  3429 € per year 

operation and maintenance cost (excl. inverter) 0.5% of investment + land lease 

year of installation 2014 

 

Table 5-10: The categories of ownerships considered in the sensitivity analysis 

Owner category Examples Electricity price  (€/kWh) Tax VAT 

  Buying* Selling**   

Municipality  0.27 0.16 0% yes 

Industry  0.11 0.16 25% no 

Professional services layers, dentists, real estate brokers 0.27 0.16 25% yes 

Community housing associations (boligforeninger) 0.27 0.18 25% yes 

*cost of buying electricity from the grid 

**income from selling excess production to the grid 

 

The percentage of the energy produced by and consumed by the owner has become important 

due the revision of the Danish solar regulations of December 2012. In this investigation the frac-

tion own consumption is defined as the fraction that yields for the initial, non-degraded installa-

tion. It is assumed that the numeric value of the own consumption is constant over the opera-

tional period whereas the fraction that is consumed by the owner will increase it the energy out-

put goes down.  
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The system energy output will decrease over time due to degradation of the modules. The an-

nual decrease in output power is assumed to follow a course where the annual output in a given 

year, X(n), is a fix percentage, Y, lower than the output the previous year, X(n-1): 

 

 X(n) = X(n-1).(100%-Y) n=1, 2, 3, 4, ……. 

 

The normalized energy output from an installation following this relationship is shown in Figure 

5-4. Y is in the following denoted the year-to-year degradation. 

 

 

Figure 5-4: Normalised energy output for installations with three different degradation courses following the 

X(n)=X(n-1).(100-Y) where Y is respectively 5%, 10 % and 20 %. 

 

Operating the solar installation under the present Danish business regulations allows for depre-

ciating the asset with maximum 25% per year. As the rate of degradation is higher for the poly-

mer solar technology than for conventional PV technologies, a shorter depreciation period and a 

correspondingly higher annual depreciation might be argued, but will require a revision of the 

present practice, and it thus not considered here.  

 

The operational period is the period the installation is operated before disassembly or replace-

ment of the degraded modules. 

 

The optimum operational period  

The optimal operational period for the installation is defined at the operational period giving the 

highest return on investment (IRR). Figure 5-5 shows how the optimal operational period varies 

with the module cost. The effect of ownership and degradation are included in the vertical bars 

(range of results). The ownerships included are the four categories listed in Table 5-10, and the 

degradation is according to Figure 5-4, with Y equal 5%, 10% and 20%. The ideal period for op-

eration the PV plant ranges from 13 years to 24 years depending on the degradation rate, the 

ownership and the modules cost.  
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Figure 5-6: Average internal rate of return (IRR) for a polymer solar plant owned by a municipality and operated 

for 7 years. The diagram illustrates the effect of degradation rate, module cost and own consumption.  
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Figure 5-7: Average internal rate of return (IRR) for a polymer solar plant under various ownerships, own con-

sumptions and module costs. 10 % year-to-year degradation is assumed, the operational period is set what is 

optimum for the actual ownership and module cost.   
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6. Business Opportunities 

DTU has in a concentrated effort spring 2011 explored various strategies for commercialization 

of the OPV technology, and more precisely analysed the prospects for a spin-out company 

rooted in DTU’s technology.  

 

DTU’s polymer solar technology represents business opportunities in more segments:  

- The business of producing and selling solar cells in a more or less refined versions; as “raw” 

polymer solar cells, as solutions where the solar cell is adapted to a specific application and 

as solar-powered end products. 

- The auxiliary business covering process-specific materials, production machinery, instru-

mentation for quality control and/or R&D investigations 

- The business of selling knowledge; contracted R&D, training programs, IPR etc.    

 

Present and near-future business opportunities 
At present three Danish companies are commercially involved in OPV, see Figure 6-1. Me-

koprint A/S who is marketing roll-to-roll produced polymer solar cells and customized polymer 

solar-cell solutions. Grafisk Maskinfabrik A/S who is building and selling roll-to-roll machinery for 

production of polymer solar cells, and the recently founded FOMTechnologies who is selling 

R&D equipment for coating and testing of functional organic materials and special materials 

here for. FOMTechnologies is founded by a previous DTU employee together with a partner 

from the printing industry. DTU is not co-founder of the company but has licensed the sale of 

their solar cell tester and a mini roll coater both to FOMTechnologies.  

 
Besides these three, two companies are in the “pipe line” as they are following the technology 
closely with the purpose of being there when their share of the polymer solar cell market takes 

off; Faktor 3 ApS, with the business idea of designing and developing solar-powered products, 

and Gaia Solar A/S whose mission is to supply alternative energy with electricity producing so-
lar technology. 

These five companies contribute to the commercialization of the OPV technology, or will do so 

at the time when their specific market evolves. Their initiatives are judged to be adequate and 

sufficient for bringing OPV to the markets presently available, namely the market for low de-

manding niche applications and machinery/instrumentation/materials for R&D purposes plus the 

dawning business of producing polymer solar cells.  

 

None of these companies has, however, sufficient technological – or financial strength for taking 

the position as DTU’s strategic partner in the long-sighted R&D effort needed for entering the 

solar-cell market in its full width. This means more advanced OPV devices and more demanding 

applications.  

 

The route to advanced products and demanding markets 
Entering the solar-cell market in its full width means developing the OPV technology to the point 

where grid-tied OPV installations are competitive with alternative PV technologies; competitive 

with respect to installation cost and levelized cost of energy, but also competitiveness with re-

spect to energy pay-pack time and energy return factor. At the time these targets are met, the 
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The technological keys to the high-volume mass market are more advance processes than Pro-

cessOne and derived from here competitive power production. This means improved solar cell 

performance and cost-effectiveness at all levels from materials via installation and operation to 

decommissioning, and also energy-effectiveness at these levels. Bringing the OPV technology 

to this point should preferably be done in a strong strategic partnership where the partner 

should provide venture capital and business knowledge 

 

DTU’s qualified strategic partners should be sought in environments familiar not only within the 

target marked, namely the PV mass market, but also familiar with the key technologies required 

in the R&D phase and in the subsequent commercial phase. The role of the strategic partner 

will be to lift the R&D tasks that are heavy in technology and development out of DTU’s R&D 

labs and into a setting where the commercial anchoring is ensured. The role will furthermore be 

to mirror major R&D considerations commercially. The characteristics of the qualified strategic 

partner are:   

 

Technology wise: Must identify with the R&D intensive segments of the OPV value chain,

namely process-specific materials and the processing itself. This requires

general knowledge in materials science and PV technology, matched with

core competences in organic chemistry and solution processing. 

Business wise: Must identify with a technology-push strategy and long-sighted R&D, and 

must be comfortable with “high technological risk & high expected return” in-

vestments.  

 

The medium- to long-sighted business opportunities are more; OPV modules, OPV process-

specific materials (inks and substrates), OPV processing machinery, installation and operation 

of OPV plants, and eventually also businesses of various auxiliaries. Except for the OPV plants 

are these opportunities identical to the present – and near future business opportunities, but the 

effort required is markedly different and so are also the market volumes. Entering the high vol-

ume markets requires a considerably stronger financial – and R&D commitment than what is 

seen in the present phase. International partners/investors might therefor be required.   

 

A preliminary ranking of the business opportunities according to investor profile and DTU’s 

strengths are given in Error! Reference source not found.. The very first bid of the investment 

needed for entering the solar cell mass market via a start-up producing OPV modules but not 

installing them, is DKK 10 mill.x10 years.  Raising this amount of capital requires a strong 

streamlined patent portfolio and a recognized potential for above-average returns. DTU has pt. 

a strong knowhow in this field, but further actions await a strengthening and streamlining of the 

patent portfolio for the purpose and a comprehensive valuation of commercial risks and poten-

tials.  

 

Establishment of a company developing and selling R2R machinery for OPV production is less 

capital intensive and involves less risk. The main manufacturing equipment; roll-to-roll lines with 

relevant coating and printing stations, adequate process control, and pre- and post-treatment 

stages, can to a large extent be built from industrially proven building blocks. A start-up compa-

ny will, consequently experience a strong competition with existing well-established Danish and 

international companies in this field, and the start-up company will have a disadvantage with re-
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spect to credible long-sighted guarantees. The best strategy here might therefore be to explore 

this business in collaboration with established players in this field. 

 

Production of OPV-specific materials hinges on general knowledge in chemistry and wet-

chemical processing equipment, which can be reached as a ramp-up of laboratory setups at low 

volumes, whereas the setup suited for high volumes equals what is found among commercial 

actors with speciality materials and chemicals.  

 

Further actions 
DTU will maintain a strong focus on their key target: to develop of the OPV technology towards 

the PV mass market and large-scale power production. Essential for addressing the PV mass 

market will be to continue the on-going effort on strengthening the patent portfolio, on discuss-

ing with potential investors and strategic partners, on benchmarking OPV as a large-scale ener-

gy conversion technology, and on generating the R&D results required for achieving this.  
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